llkatheatre.blogg.se

Levi's flat cap
Levi's flat cap












levi

Shafikov, R.: Real analytic sets in complex spaces and CR maps. Pinchuk, S., Shafikov, R., Sukhov, A.: On dicritical singularities of Levi-flat sets. Pereira, J.V., Pirio, L.: An invitation to web geometry. Narasimhan, R.: Introduction to the theory of analytic spaces. Lebl, J.: Singular Levi-flat hypersurfaces in complex projective space induced by curves in the Grassmannian. Lebl, J.: Singular set of a Levi-flat hypersurface is Levi-flat. Lebl, J.: Algebraic Levi-flat hypervarieties in complex projective space. Jouanolou, J.-P.: Équations de Pfaff algébriques. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Gómez-Mont, X.: Integrals for holomorphic foliations with singularities having all leaves compact. Jouanolou concernant les feuilles fermées des feuilletages holomorphes. Ghys, E.: À propos d’un théorème de J.-P. 2(89), 391–403 (1969)įernández-Pérez, A.: On Levi-flat hypersurfaces with generic real singular set.

levi

Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation. 11(1), 17–90 (1933)Ĭartan, H.: Variétés analytiques réelles et variétés analytiques complexes. 58(3–4), 315–324 (2012)Ĭartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes.

levi

6(4), 661–672 (2007)īrunella, M.: Some remarks on meromorphic first integrals. PhD Thesis, Universidade Federal de Minas Gerais, Brazil, (2016)īrunella, M.: Singular Levi-flat hypersurfaces and codimension one foliations. Princeton University Press, Princeton, NJ (1999)īretas, J.: Folheações holomorfas tangentes a subconjuntos Levi-flat (Portuguese). Locally, a germ of real analytic Levi-flat subset is contained in a germ of irreducible complex variety \(H^\) in H are algebraic.īaouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Real submanifolds in complex space and their mappings. An irreducible real analytic subvariety H of real dimension \(2n +1\) in a complex manifold M is a Levi-flat subset if its regular part carries a complex foliation of dimension n.














Levi's flat cap